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\\{ SUMMARY
A non-linear theory is developed for constant-strain waves in
elastic strings. The speed of longitudinal and transverse waves 1is
related to the strair. and tension, The results can be used to cal-
culate tension due to impact and thus breaking loads. Some gener-

alizations are sugg:sted. ) T——

INTRODUCTION: EQUATIORS (OF MOTION

If it 1s assumed that the tension T in 2 string is given by
T-T +F(o) (1)
vhere
To = initial tension = constant
o = strain and F(o) = E o

then solutions to the equations of motion can be given for the propa-
gation of waves of constant strain and tension. Ouch solutions are
not restricted to small displacenments or slopes and are hence of
special interest. The waves vhich propagate consist of straight line
segments wvhich move with constant velocity. The accelerations are
thus zero except at points where the velocity jumps. At these points
the acceleration is infinite. A convenient way to discuss the speed
of propagation is by considering the differential-equations of motion.
The differential equations can be considered to contain the impulse-
momentum laws. Another approach is to apply the impulse-momentum laws
directly.

Newton's laws of mction applied to an infinitesimnl clement of

string, are

i

pYy . (T cos 9)x (2)

[}

PVt (T sin O)K (7))
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vhere (see Pigure 1)
u, v = horizontal and vertical displacements rcspec-
tively of point located at x in unstrained string.
® = inclination of string
p = mass per length = constant
No external forces are considered. The horizontal projection of an

element originally of length Ax is (1 + ux) A x; the vertical pro-

Jection \% A x; and its length A s =ﬁ1 + ux2 + vx2 A x . Therefore

v
ein 6 = X = (1)
)
vzi + ux) WL
(1 +u)

cos 6 = Ux (5)

i uw)  v?

X X
O.A%L,%Nx)ﬁwfq (6)

The characteristic lines, which represenl. the locus of possible dis-
continuities or wvave f~-nts, can be found for the system of equationmns
(1) - (6). Tvo set: haracteristics appear representing different

vave velocities. These speeds are

c, EE-E (1)

. zﬁTotPTﬂ_ﬁTo+Eo -
2 p 1+0 lp 1+0

Cl is the speed of lo_xitudinal waves in a solid bar of the same

material.

C2, for small strains, becomes the speed of transverse waves in a
string. 0

For most applications Cy > C,. It should be noted that one speed

of propagation is variable and depends on the strain o. The details
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of the characteristics are not shown here since the same result about
propegation speeds is derived by physical considerations in paragraph 2.
The general solution for constant strain waves can be written in
the form
v (x, t) = linear function of (x, t)
u (x, t) = linear function of (x, t)

Then since v_, u , v,, U, are comstants it is easily seen from (1) - (6)

t
that ©, o, T are constants and that the differential equations (2) and
(3) are satisfied trivially, except where the velocity Jjumps. The

simplest example leading to waves of Lhis tyne is discussed below.

RADIATION PROBLEM: SEMI-IRFPINITE STRING

Consiler the string at rest initially with zero displacement

uzut=‘lzvt=3 t=0 (9)

Also, consider at first an infinite string - @ < x < ®. Let a con-
stant verticel velocity be imported at the point vhere x = O wvhen t = O,
Then by symmetry u = 0 at that point for all time and hence x = O there.
The boundary conditions are thus, for t>0.

v (0, t) = V = constant (10)

v (0, t) =0

It 18 now sufficient to consider x > 0. The solution of the correct

forn is
X X
V(t--c—) t>-c—
v v
v = (11)
0 t < 3
c
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(
-U—x t > =
c
v v
U(t-’c‘—)
us= < g L ctcX (12)
c c c
v u v
1-—
c
u
L0 t < —
u

vhere

c, " velocity u waves, and c, = velocity of v waves.
The various regions in the (x, t) diagram and the shape of the waves
are shown in Figure 2. The shape of the waves was determined by the
fact that ¢y < % and thet u =0 al x =0 and fer x> cut. It
can be showvn, and is verified below, that the momentum equations can-
not be satisfied if c, is assumed greater than cy The undetermined
constants in (11) and (12) are U, c,» ¢, These are computed by ap-
plying the horizontal impulse-momentum law along x = cut and the
norizontal and vertical laws along x = cvt.

Before doing this it i1s convenient to compute the slope and the

strains vhich are constant in the various regions. We have

nl -U— v V
x Cv lx Sy
- U
“u
u, = e Vo = 0] (13)
X 1-_V X
c
u
X . v
)
01-]/(1+E-)2+-V;-1 sin 0, = M
v ¢ v(* U 2 vé
(1 + =) +
v o?
§) v
ca
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l+l
c
= = = = !
02 03 05 0 cosOl
U \'s
(1+3) +—=
v cy

The subscripts denote the regicms shown in Figure 2.

Comsider now the vertical motion. Formally, we may write

T sin @ = T) einelu(t--’c-‘:) (1b)
wvhere
l z -0
H (z) = unit step function =
0 g <0
Thus (3) becomes
X
PVer = -5 Ty sin 6, 8 (¢t - c—v) (15)

vhere 5 = delta fanction. Integration of (1° with respect to t gives

the velocity jump across x = cvt

1

- '&: T, sin @, = pvlt vhich by (11) = pV (16)
Similarly
x X x
TcosO-TlcoselH(t-E—) +T2{II (t"é") - H (t-c—-}
v v v
+ 1,1 - H (t - X) (17)
% c
u
and
= 1 - i U
S (Ty - T,) =p (w, - u, ) vhich by (1b) = —B== (18)
u t t 1 v
T e
u
-l—'l‘2 -%—Tl cos 8, = p (“l - u, ) wvhich by (1k)
v v ' t t
. —=0Y (19
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Nov since o are known in terms of (U, c, cu), T, ond T, are known

1’ %
functions of U, c , c and the Eqs. (16), (18) and (17) determine U, c,

Cy Taat is, T, and T, can be expresced as

1 2
/ 2
U v
T1=TO+E01=TO+E V(uc—v) +-c-§-1
-LLV
cu
T, =T +Eo, =T -E - (20)
i - X
e
u
Ty = T,
Thus (18) becomes U
U1 o _‘u
CV-CU cV
1 - — o=t
[ C
u u

1’ 7
cy ® -5 = Cl (21)

It follows that (16) and (19) are two equations fcr U and c,, and

these become

Tl sin el = =-p ch
(22)
Tl cos 91 = 'I'O -p Ucu
or _
-p ch Cv
v
2 2 2 2
T = (p va) e ('rO -p Ucu) = (To + E °1) (24)
(2%) can be solved for U to yleld
2 2
¢ -c,
U= c_ +C (25)
u v

by
vhere c2 = 32 = speed of v wvaves in a small displecement theory.

Using (25), (24) is the equation for e,
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Before solving for cy it 1s uwseful to find expressions for the

strain. Using (25)

2 2
o) = \&1.+ g—) + 1_5 -1=

v c
v
also 2
c” 4+ e
T, - p Uc, =pc, e (27)
u v
Hence (24) becomes
2 2 2 l 2 2 2
T, =p" ¢, «¢, (1 + ol) = (To + B ol) (28)

¢ 2 c2 cé + 0 ¢ 2
v -U 1l u
= 3 = o )
¢ 2 ¢ » or ¢ ¢ 1+ 9y (29)

A comparison of (29) and (20) ylelds the interesting result that

0 = 0y and T, = T (%0)

1l 2 2

The strain and tension have the same constant value over the entire
disturbed part of the string.

Now using (27) and (29), equation (2:) ylelds the following
quartic equation for c (v, c c).

%

(cu - cv)2 (c

2 2 2,2 2 2 2,2
+ ey cv) .V (cu - c, )" = c, (Cu - ¢ )7 (31)

When c is found from this equation the strain is given by (20). Two
limiting cases are of interest
(1) V 18 small; (31) shows that as vV +0a solution exists inde-
pendent of V, namely c, = C. The strain is zero and this
theory goes over to the usual linearized theory.
(11) c2 -+ 0; waves are sent out in a string whose initial tensicn

is zero. Writing | V = a Cyu
(%2)
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(33) becomes

xh (1 + ae) con -2a° 2% +a? .0 (33)

For a, A\ << 1 an approximate solution to (33) can be obtained by ne-

Zlacting the xh term in (33). Solving the resulting cubic equation

ylelds
9—'21;-; ¢ 0 () (34)
Hence, approximately 1
eIV (35)

The last result clearly shows the non-linearity dependence of trans-
verse wave speed on incoming velocity. The corresponding expression

for etrain is

o) = g 3 & (36)
3 3 3
(v- .2 -1
Now T, = T, = E 0, so that (36) can be used to compute the velocity

of motion which would break a given string.
It can be noted that the stress and strain are independent of the

area of string. The inclination of the string 1s given by

2 IR I IR T
sin 8, —v— (—- ;57- (—) - lf = - (g:) (37)

and the constant force required to produce the wave 1is

C
u

E v O
F,=-7T s5in8, = ;]73 (=) (%8)

Some typical numerical values are those for 3/16'' -arbon steel

5

cable vhere E = 4.7 x 10” 1lbs, c, = 17,050 ft/sec; 4f V = 690 ft/sec

= 3900 lbs (39)



P-359

<Al DL

Reflect on problems can be treated in the same way. It can be
showvn that the reflections of the longitudinal wave at an end travels

back with the speed C,, relative to the original coordinmate x. Upon

1’
reflection from a fixed end (u = O) the strain and hence that part of
the tension due to strain is doubled. Upon reflection from a free
end the strain becomes zero and the tension is then To.

The reflection of the returning longitudinal wave with the on-

coming transverse vave can also be worked out in the same way.

CONCLUDING REMARKS

It has been shown hov the problem of propagation and reflection of
constant-strain wvaves in an idealized elastic string can be treated.

The results are especially interesting since they are not limited to
small deflections. Longitudinal and transverse waves occur which
travel vith different speeds relative to the string. One limiting case
shovs hov a wave propegates because of elasticity in a string with :zero
initial tension.

The results have a practical application in estimating the sud-
denly applied constant force vhich will break a rope. An example of
this wvas presented for zero initial tension which clearly shows the no: .-
linear dependence of tension on force (Eqs. (58) - (40). It should be
remarked that the results for the idealized string are independent of
the cross-section area, so long as the string bchaves in a similar
manner.

The case of varying velocity applied to a string can be treated by
replacing the velocity curve by segments of con:..ant velocity. Then the
actual motion can be approximated by various constant-strain waves. {imi-

lar problems occur vhere a load moves as a string.



